IEEE-IAS – Atlanta Chapter

Instrumentation & Controls Issues in Industrial Electrical Design

January 19th, 2016

W. Michael Sutton, PE, ISA CAP Project Sales Engineer

INSPIRING INNOVATIONS

Agenda

- Analog Signals
 - Surge Protection
 - Signal Conditioning
- Fieldbus Networks

- I&C Design Engineer\Manager for 13 years at major consulting firm in the Water/Wastewater Treatment Industry
 - Developing P&IDs, control system network diagrams, basic panel layouts, instrumentation details, specifications for instruments, control systems and panel components
- Coordination with other design disciplines
 - Civil and process groups
 - Electrical power requirements, network layouts, area classifications,

Agenda

- Analog Signals
 - Surge Protection
 - Signal Conditioning
- Fieldbus Networks

Analog Signals

Water/Wastewater Industry

- Pressure, Level, Flow, Temperature
- Speed, Valve Position/Control
- Chlorine Residual, Dissolved Oxygen, Nutrients, Suspended Solids, Conductivity, pH
- Analog Signals
 - 4-20 mA DC
 - Loop powered
 - 120 VAC powered devices
- Maintain high availability of signals through surge protection and/or signal conditioning

What is Surge Protection?

 Function of Surge Protective Device (SPD) is to divert transient voltage and current away from sensitive equipment, without interruption of the normal circuit operation.

What is Surge Protection?

What is Surge Protection?

Why Surge Protection?

Source of disturbances

LEMP

Lightning Electromagnetic Pulse

Extremely high surge voltages

Occur only rare as compared to other types

SEMP

Switching Electromagnetic Pulse

Switching of high-capacity machines

Short circuits in the power supply network

Occurrence of extremely high current changes

ESD

Electrostatic Discharge

Discharge between bodies

Generally not harmful to human beings

Lessons Learned – Surge Protection

- Proper selection of the surge protective devices
- Detailing where it is required and installation of components
- Understanding shield concepts and detailing shield connections

Signal loops for Analog-Signals

Circuits with common reference for Binary-Signals

- For isolated circuits
- Low protection level between the lines
- High protection level to ground

- For grounded circuits or circuits with common reference
- Low protection level to reference (ground)
- Higher protection level between the lines

protection for analog signals

protection for binary signals

Lessons Learned – Surge Protection

- Proper selection of the surge protective devices
- Detailing where it is required and installation of components
- Understanding shield concepts and detailing shield connections

Where to Place Surge Protection

Where to Place Surge Protection

To protect the complete system, surge protection on both sides of the cable is necessary!!!

Wiring is part of a good or bad installation

Lessons Learned – Surge Protection

- Proper selection of the surge protective devices
- Detailing where it is required and installation of components
- Understanding shield concepts and detailing shield connections

Shielding Why is a shield needed?

Shielding Grounding concepts and their behaviour

- Both ends grounded
 - + protection against capacitive coupling
 - + reducing inductive coupling
 - equalization currents on shield

Shielding Grounding concepts and their behaviour

- One end grounded
 - + protection against capacitive coupling
 - + no equalization currents on shield
 - not reducing inductive coupling
 - danger of spark over due lightning impact

Step - voltage

Shielding Grounding concepts and their behaviour

- Double shielded
 - Inner shield one side grounded
 - Outer shield both sides grounded
 - + protection against capacitive coupling
 - + reducing inductive coupling
 - + no equalization currents on inner shield
 - danger of spark over due lightning impact
 - caused by partial lightning currents on outer shield

Potential differences can lead to a spark over! Shield should be included to the surge protection concept!

Shielding Integrating in surge protecting concept

- Non-isolated system, both ends grounded, SPD on both ends
 - SPDs on both sides
 - Shield on both sides grounded
 - Equalization currents on shield

Shielding Integrating in surge protecting concept

- Non-isolated system, one end grounded, SPD on both ends
 - SPDs on both sides
 - Better solution?
 - High voltage drop in ground possible
 - Diodes became conductive!
 - Equalization currents on line!

 $R_{wet \ pebbles} = 500 \frac{\Omega}{m}$ d = 25m $I_{ground} = 1mA$ $\Delta U = 25m * 500 \frac{\Omega}{m} * 1mA = 12, 5V$

Shielding Integrating in surge protection concept

- Non-isolated system, one end grounded, SPD on both ends
 - SPD on both ends but slight difference in design
 - Indirect grounded!
 - No equalization currents
 - Partial lightning current on shield in case of lightning

Shielding Integrating in surge protecting concept

- Non-isolated system, double shielded, SPD on both ends
 - SPD on both ends but slight difference in design
 - Indirect grounded!
 - No equalization currents
 - Partial lightning current on outer shield in case of lightning

Agenda

- Analog Signals
 - Surge Protection
 - Signal Conditioning
- Fieldbus Networks

Goals of Analog Signal Conditioning and Protection

- Improve Accuracy
- Increase Quality
- Reduce Installation Costs
- Reduce down time
- Safe Control
- Improve reliability
- Protect expensive equipment

Interface Analog Why signal conditioners are used?

Isolating

- High currents influencing the signal transmission
- Signal filtering and conversion to a current signal can help eliminate and avoid interferences
- Low Pass limit filtering best < 50HZ</p>

INTERFACE Analog Why signal conditioners are used?

Signal Isolation Types of Isolation

Optical Isolation

- Uses light emitting diodes
- Higher resolution Faster response times
- Lower cost
- More sensitive to static discharge and transients

Magnetic Isolation

- Uses transformer
- More robust
- Higher cost

Lessons Learned – Signal Conditioning

- Proper selection of the signal conditioning devices and interfacing with the control system
- Signal conditioners are not surge protective devices

INTERFACE Analog Isolation technologies / active vs. passive **Analog IN** OUT (PLC / DCS IN Sensor / Field transmitter 3-Way Isolator Isolation passive passive active active Filtering Conversion Us 4-wire Amplification e.g. e.g. 4...20 mA 4...20 mA 0...20mA 0...20mA 0...10V 0...10V 0...5V 0....5V U_s

INTERFACE Analog Isolation technologies / active vs. active

Lessons Learned – Signal Conditioning

- Proper selection of the signal conditioning devices and interfacing with the control system
- Signal conditioners are not surge protective devices

Interface Analog Why signal conditioners are used?

Isolating

Signal Conditioners/Isolators are NOT Surge Protective Devices

- Isolation/test voltage 3 kV
- Not designed to handle high current, short duration surges
- If surge is needed, install SPD in front of isolator

Agenda

- Analog Signals
 - Surge Protection
 - Signal Conditioning
- Fieldbus Networks

What is Fieldbus?

- Fieldbus interconnects "field" equipment such as sensors, actuators and I/O to a control system on a single pair of wires
- Fieldbus Systems IEC 61158-2 Specification
 - Fieldbus is an all-digital, serial, two-way communication system with a data rate of 31.25 kbit/s
 - Profibus PA & Foundation Fieldbus
 - Manchester II coding

Fieldbus Protocols

Foundation Fieldbus & Profibus PA

Foundation Fieldbus and Profibus PA are physically identical

- Twisted pair cables
- Balanced power conditioning
- Device Couplers
- Two terminators required
- 9 32 Vdc
- 1900 Meter total segment length (120 meter spur length maximum)

Primary Differences

Profibus PA

- Polling Master/Slave
- Bus Master
- · Addressing instruments individually
- Device only communicates w/ master
- Communication loss fail safe

Foundation Fieldbus

- Cyclic transmission Publisher/Subscriber
- Link Active Scheduler (LAS)
- FF Devices automatically present on bus
- Peer to Peer communication possible
- Communication loss backup LAS

Fieldbus Protocols

Foundation Fieldbus and Profibus PA

- What does the signal look like?
- Manchester II coding is used for both protocols
- 31.25 kbit/s means each bit has a period of 32 μs
 - An ideal signal spends 50% of the time positive and 50% of the time negative

Foundation Fieldbus Topology

Profibus PATopology

Why Fieldbus?

- Saving IO cards
- Saving cables
- Saving cabinets
- Access to data
- Ease of planning / installation and startup
- Enabling fully digital communication
- Still being highly reliable

•

→Saving money

Lessons Learned – Fieldbus Networks

- Understanding the process, process control timing, and number of devices per trunk
- Properly detailing network layout and wiring restrictions; making sure Electrical Contractor adheres to design
- Understanding shield concepts and detailing shield connections

Communication Structure

Token Passing Network

Macrocycle: The repetitious scheduling of the Function Block within all the devices on a segment. The LAS is responsible for scheduling of the segment macrocycle

Token Passing Network

- For loops requiring **1s** macrocycle time, limit segment to **12 devices** including **3 valves** maximum
- For loops requiring **0.5s** macrocycle time, limit segment to **6 devices** including **2 valves** maximum
- For loops requiring **0.25s** macrocycle time, limit segment to **3 devices** including **1 valve** maximum

Lessons Learned – Fieldbus Networks

- Understanding the process, process control timing, and number of devices per trunk
- Properly detailing network layout and wiring restrictions; making sure Electrical Contractor adheres to design
- Understanding shield concepts and detailing shield connections

Fieldbus Wire Specification

Cabling

Type Multi
Type Multi
Type Multi
Type Multi

Cable Type and Description	Max Segment Length
Type A: Multi or single-twisted-pair, individually shielded	1,900 (6,232)
Type B: Multi-twisted-pair, with an overall shield	1,200 (1,200)
Type C: Multi-twisted-pair, without shield	400 (1,312)
Type D: Multi-core, without twisted pairs, without a shield	200 (656)

Meters (Feet)

Total Devices	1 Device per Spur	2 Devices per Spur	3 Devices per Spur	4 Devices per Spur
25-32	1 (3)	1 (3)	1 (3)	1 (3)
19 – 24	30 (98)	1 (3)	1 (3)	1 (3)
15 - 18	60 (197)	30 (3)	1 (3)	1 (3)
13 - 14	90 (295)	60 (197)	30 (98)	1 (3)
1 - 12	120 (394)	90 (295)	60 (197)	30 (98)

Additional Specifications:

- Attenuation
- Shield construction
- Wire Resistance / Km
- Wire-to-Shield capacitance
- Shield coverage
- Wire Twists per Meter
- Minimum Bend Radius
- Jacket Resistance

Fieldbus Terminator

- Exactly 2 terminators are required for each segment
- RC network creates a 50 Ohm equivalent load for the network
- Prevents signal reflections
- Signal level should be between 0.75V and 1.0V pp @ 50 Ohm

Signal Amplitude	Status	
If peak-to-peak level is > 1 V	Missing terminator	
If peak-to-peak level is between ${\bf 0.75~V}$ and ${\bf 1~V}$	Properly terminated	
If peak-to-peak level is between 0.15 V and 0.75 V	Too many terminators	

Fieldbus Cabling

Minimize loops and maintain proper bend radius

Lessons Learned – Fieldbus Networks

- Understanding the process, process control timing, and number of devices per trunk
- Properly detailing network layout and wiring restrictions; making sure Electrical Contractor adheres to design
- Understanding shield concepts and detailing shield connections

Class A: Single Point Shielding

Class B: Multi Point Shielding

Class C: Shielding Using Isolated Device Couplers

Class D: Multi Point Shielding Using Capacitive Coupling

Summary

Regardless, if it is analog or digital...control is only as good as the instrumentation and the signal

 Little more effort on the design details can alleviate a lot of field headaches

IEEE-IAS – Atlanta Chapter

Questions?

W. Michael Sutton, PE, ISA CAP Project Sales Engineer

INSPIRING INNOVATIONS